Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Public Health ; 21(1): 1543, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1351119

ABSTRACT

BACKGROUND: Influenza is a substantial cause of morbidity and mortality for Israel and the Palestinian territory. Given the extensive interaction between the two populations, vaccination in one population may indirectly benefit the other via reduced transmission. Due to the mobility and extensive contacts, Palestinians employed in Israel could be a prime target for vaccination. METHODS: To evaluate the epidemiological and the economic benefits conferred by vaccinating Palestinians employed in Israel, we developed a model of influenza transmission within and between Israel and the West Bank. We parameterized the contact patterns underlying transmission by conducting a survey among Palestinians employed in Israel, and integrating survey results with traffic patterns and socio-demographic data. RESULTS: Vaccinating 50% of Palestinian workers is predicted to reduce the annual influenza burden by 28,745 cases (95% CI: 15,031-50,717) and 37.7 deaths (95% CI: 19·9-65·5) for the Israeli population, and by 32,9900 cases (95% CI: 14,379-51,531) and 20.2 deaths (CI 95%: 9·8-31·5) for the Palestinian population. Further, we found that as the indirect protection was so substantial, funding such a vaccination campaign would be cost-saving from the Israeli Ministry of Health perspective. CONCLUSIONS: Offering influenza vaccination to Palestinians employed in Israel could efficiently reduce morbidity and mortality within both Israel and the Palestinian territory.


Subject(s)
Influenza Vaccines , Influenza, Human , Cost-Benefit Analysis , Humans , Immunization Programs , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Israel/epidemiology , Surveys and Questionnaires , Vaccination
2.
BMC Public Health ; 21(1): 596, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1153996

ABSTRACT

BACKGROUND: Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 transmission but poses a significant humanitarian and economic crisis. Thus, it is essential to improve our understanding of COVID-19 transmission, and develop more focused and effective strategies. As human mobility drives transmission, data from cellphone devices can be utilized to achieve these goals. METHODS: We analyzed aggregated and anonymized mobility data from the cell phone devices of> 3 million users between February 1, 2020, to May 16, 2020 - in which several movement restrictions were applied and lifted in Israel. We integrated these mobility patterns into age-, risk- and region-structured transmission model. Calibrated to coronavirus incidence in 250 regions covering Israel, we evaluated the efficacy and effectiveness in decreasing morbidity and mortality of applying localized and temporal lockdowns (stay-at-home order). RESULTS: Poorer regions exhibited lower and slower compliance with the restrictions. Our transmission model further indicated that individuals from impoverished areas were associated with high transmission rates. Considering a horizon of 1-3 years, we found that to reduce COVID-19 mortality, school closure has an adverse effect, while interventions focusing on the elderly are the most efficient. We also found that applying localized and temporal lockdowns during regional outbreaks reduces the overall mortality and morbidity compared to nationwide lockdowns. These trends were consistent across vast ranges of epidemiological parameters, and potential seasonal forcing. CONCLUSIONS: More resources should be devoted to helping impoverished regions. Utilizing cellphone data despite being anonymized and aggregated can help policymakers worldwide identify hotspots and apply designated strategies against future COVID-19 outbreaks.


Subject(s)
COVID-19 , Communicable Disease Control , Population Dynamics , Poverty , Aged , Child , Humans , Israel , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL